SEMINAIRE CHIEN WANG (DEEP LEARNING)

Exploring Deep Learning Algorithms in Forecasting the Occurrence of Severe Haze Events in Southeast Asia

Adverse environmental and weather events cause substantial economic loss. For instance, particulate pollution has become a serious environmental and societal issue of many Southeast Asian countries in recent decades. Forecasting the occurrence of these high-impact events could allow mitigation measures to be implemented ahead of time and thus effectively minimize economic loss. In this front, the “traditional” numerical forecasting models seem to be the first choice. Nevertheless, due to the lack of real-time data such as emissions (e.g., for haze specifically), significant and sophisticated spatiotemporal variabilities associated with these often low-probability events, and the propagation of numerical or parameterization errors through model integration (well, ensemble could be a much expensive mitigation), such a task still poses a serious challenge to these “traditional” forecasting models. On the other hand, in the last few years deep machine learning has earned explosively growing popularity by conquering one after another changing task from visual and voice recognition, natural language, to game playing. Differing from many “traditional” machine learning techniques that often proceed following certain abstract models or procedures made by human, deep learning directly connects raw data as input with the output through deep artificial neural networks that decompose then learn different characters of the sophisticated structure of input data (e.g., images), providing an “end-to-end” solution. The application of deep learning in Earth sciences seem still in its earliest stage. Arguably the first group of published such attempts in identifying several weather patterns including tropical cyclone has been successful. The capability of deep neural networks in capturing very complex images indeed suggests a great potential for wider applications in our sciences. Here I will describe an exploratory effort of using deep CNN to forecast the occurrence of an adverse environmental event, i.e., haze or severe particulate pollution in Southeast Asia.

Plus d'actualités

N. Maury : La convection en zone subtropicale

Les nuages de convection peu profonde sont omniprésents sur le globe, en particulier sur les zones tropicales et subtropicales où ils peuvent représenter à eux seuls plus de 20 % de […]

Mardisciences : La pollution atmosphérique pendant l’hiver arctique

En arctique, la pollution atmosphérique, causée par l’activité humaine locale et accentuée par les conditions météorologiques, déteriore la qualité de l’air dans des villes comme Fairbanks en Alaska. Lors de […]

L. Jaffeux : Comprendre la complexité des nuages par l’observation aéroportée – Retour sur une thèse et premiers résultats de la campagne MAESTRO

Louis Jaffeux a proposé une présentation des problématiques, des méthodes et des résultats qui ont marqué sa thèse de doctorat intitulée « Outil de classification automatique des images de sondes à rangées […]

Rechercher